March 2021

Display Array Clock Firmware

For this clock project, I’m using a Raspberry Pi Pico, but the code should be easily ported to any other microcontroller, as the functionality of the clock itself is basic. The Raspberry Pi Pico has a built-in RTC so results easier to implement the clock. Other Microcontrollers with Wifi Capabilities could also obtain the clock data from a web service instead of an intrnal RTC making the board capabilities more atractive as weather or many other kind of IOT notificaions.

The firmware uses already converted images to have the nicest look, this could also be done with a Numerical Font and interchangeable backgrounds but I think it would not look this great.

For the image conversion, I use the software LCD Image Converter which is a very useful piece of software, fo the displays in the Display Array Board I use RGB565 and copy the data to *.h file in my project.

Image conversion

By clicking the button Show Preview we have access to the data Image to add to our project and send it to the display.

Image Data

After converting all the images for the clock we just need to call the corresponding image and send it to the corresponding display, for this, I have just used some simple if statements.

if(t.hour >= 1 & t.hour <= 9){
          lcdDrawNumber(pio,sm,display1,0);
          lcdDrawNumber(pio,sm,display2,t.hour);
       }else if(t.hour >= 10 & t.hour <= 12){
          lcdDrawNumber(pio,sm,display1,1);
          lcdDrawNumber(pio,sm,display2,t.hour-10);
       }else if(t.hour >= 13 & t.hour <= 21){
          lcdDrawNumber(pio,sm,display1,0);
          lcdDrawNumber(pio,sm,display2,t.hour-12);
       }else if(t.hour >= 22 ){
          lcdDrawNumber(pio,sm,display1,1);
          lcdDrawNumber(pio,sm,display2,t.hour-22);
       }else if (t.hour == 0){
          lcdDrawNumber(pio,sm,display1,1);
          lcdDrawNumber(pio,sm,display2,2);
       }

After doing this for minutes, AM, and PM screens we can add some animations by sending the Space image and the colon symbol image at different rates, and also this can be applied to the configuration state of the clock.

if(ConfigureTime_MODE == OFF){
         lcdDrawNumber(pio,sm,display3,COLON);
         sleep_ms(500);
         lcdDrawNumber(pio,sm,display3,SPACE);
         sleep_ms(500);
      }else{
         if(Selection  == HRS){
            sleep_ms(200);
            lcdDrawNumber(pio,sm,display1,SPACE);
            lcdDrawNumber(pio,sm,display2,SPACE);
            lcdDrawNumber(pio,sm,display3,COLON);
            sleep_ms(200);
         }else if(Selection == MINS){
            sleep_ms(200);
            lcdDrawNumber(pio,sm,display3,COLON);
            lcdDrawNumber(pio,sm,display4,SPACE);
            lcdDrawNumber(pio,sm,display5,SPACE);
            sleep_ms(200);
         }
      }

Resulting in an animation like the following:

Matrix Clock Animation

Raspberry Pi Pico connection with Display Array Board

Raspberry Pi Pico and Display Array Board

Posible error in the Pico SDK

There is a chance that your pico-SDK has an error and the program would not start. In your SDK directory: pico-sdk/src/common/pico_time/time.c file comment line 17, //CU_SELECT_DEBUG_PINS(core) and now the program should run with any problem.

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include "pico.h"
#include "pico/time.h"
#include "pico/util/pheap.h"
#include "hardware/sync.h"
#include "hardware/gpio.h"

CU_REGISTER_DEBUG_PINS(core)
//CU_SELECT_DEBUG_PINS(core) //Comment this line for RTC troubles

const absolute_time_t ABSOLUTE_TIME_INITIALIZED_VAR(nil_time, 0);
// use LONG_MAX not ULONG_MAX so we don't have sign overflow in time diffs
const absolute_time_t ABSOLUTE_TIME_INITIALIZED_VAR(at_the_end_of_time, ULONG_MAX);

typedef struct alarm_pool_entry {
    absolute_time_t target;
    alarm_callback_t callback;
    void *user_data;
} alarm_pool_entry_t;

Below you can download the source code of this clock and also the Precompiled UF2 File. The media files can be downloaded on the previous post.


image/svg+xmlOpen Source Licenses HardwareSoftwareDocumentationCERN-OHL-P-2.0GPL-3.0-or-laterCC-BY-4.0


Download

SPI Display Array Board – Clock

The main idea of this project was to make a customizable clock, a clock that would have the option to change its appearance very easily, The first option was to make it with RGB LEDs and change the color at will, maybe to have the ability to change the color according to the time of the day or with the ambient temperature, but what is more customizable than a display by itself, nowadays we can find very nice IPS Displays that are very cheap.

Maybe the hardest step of this project was the clock creation, making the graphics for each clock was really challenging as I wanted to look very similar to the real ones, like the Flip Clock, the seven-segment Display clock, the LED matrix clock.

Flip Clock
LED Matrix Clock
7-Segments Display Clock
Blue VFD Clock
Ink Clock
Wood Clock

These are only a few clocks that I have created, but it will be awesome to see other designs and that is why I’m sharing the design files of this project, I think it would be awesome to see how a project can evolve in the maker community.

I have also designed a 3D printed enclosure or in this case a frame. It consists of only 3 parts that glued together to make a single clock piece.

3D Printed clock bracket

The PCB is intended to be compatible with any Microcontroller or SBC like the Raspberry as it only needs some GPIOs and an SPI Port. This makes the PCB compatible with a simple microcontroller as an Arduino to other more advanced microcontrollers. We could say this board is a breakout board for the arrangement of six displays and 4 buttons.

SPI Display Array Board CAD

Testing the clock designs

Before writing the clock firmware I decided to test all the designs that I have already created on the computer, so using the Raspberry Pi Pico I have written a simple program that allows me to set an image for each display in order to simulate how the clock would look like.

The code for this simple task consists of the initialization of the displays and just sensing the raw data of each image to the corresponding display.

#include "pico/stdlib.h"
#include "hardware/gpio.h"
#include "hardware/pio.h"
#include "ST7735.h"

#include "clockDigital.h"
#include "clockFlip.h"
#include "clockMatrix.h"
#include "clockVFD.h"
#include "clockInk.h"
#include "clockWood.h"

#define ONBOARD_LED 25
 
int main(){
    stdio_init_all();

    PIO pio = pio0;
    uint sm = 0;
    uint offset = pio_add_program(pio, &SPILCD_program);
    lcdPIOInit(pio, sm, offset, PIN_SDI, PIN_SCK, SERIAL_CLK_DIV);


    gpio_init(ONBOARD_LED);
    gpio_set_dir(ONBOARD_LED, GPIO_OUT);

    gpio_init(PIN_CS1);
    gpio_init(PIN_CS2);
    gpio_init(PIN_CS3);
    gpio_init(PIN_CS4);
    gpio_init(PIN_CS5);
    gpio_init(PIN_CS6);
    gpio_init(PIN_DC);
    gpio_init(PIN_RST);
    gpio_init(PIN_BLK);
    
    gpio_set_dir(PIN_CS1, GPIO_OUT);
    gpio_set_dir(PIN_CS2, GPIO_OUT);
    gpio_set_dir(PIN_CS3, GPIO_OUT);
    gpio_set_dir(PIN_CS4, GPIO_OUT);
    gpio_set_dir(PIN_CS5, GPIO_OUT);
    gpio_set_dir(PIN_CS6, GPIO_OUT);
    gpio_set_dir(PIN_DC, GPIO_OUT);
    gpio_set_dir(PIN_RST, GPIO_OUT);
    gpio_set_dir(PIN_BLK, GPIO_OUT);

    gpio_put(ONBOARD_LED, 1);
    gpio_put(PIN_CS1, 0);
    gpio_put(PIN_CS2, 0);
    gpio_put(PIN_CS3, 0);
    gpio_put(PIN_CS4, 0);
    gpio_put(PIN_CS5, 0);
    gpio_put(PIN_CS6, 0);
    gpio_put(PIN_RST, 1);
    lcdInit(pio, sm, st7735_initSeq);
    gpio_put(PIN_BLK, 1);

    lcdStartPx(pio,sm);

    for (int i = 0; i < 160*80*2; i++){
       lcdPut(pio, sm, one_Flip[i]);
    }

    gpio_put(PIN_CS1, 1);
    for (int i = 0; i < 160*80*2; i++){
       lcdPut(pio, sm, two_Matrix[i]);
    }

    gpio_put(PIN_CS2, 1);
    for (int i = 0; i < 160*80*2; i++){
       lcdPut(pio, sm, three_Digital[i]);
    }

    gpio_put(PIN_CS3, 1);
    for (int i = 0; i < 160*80*2; i++){
       lcdPut(pio, sm, four_VFD[i]);
    }

    gpio_put(PIN_CS4, 1);
    for (int i = 0; i < 160*80*2; i++){
       lcdPut(pio, sm, five_Ink[i]);
    }

    gpio_put(PIN_CS5, 1);
    for (int i = 0; i < 160*80*2; i++){
       lcdPut(pio, sm, six_Wood[i]);
    }
}

For the SPI Display Array clock Firmware go to the Part2 of this project.


image/svg+xmlOpen Source Licenses HardwareSoftwareDocumentationCERN-OHL-P-2.0GPL-3.0-or-laterCC-BY-4.0


Visit my Tindie Store for the assembled board.

Download